Common Materials for Shafts
There are numerous material options for shafts, and the selection depends primarily on the requirements for strength, stiffness, wear resistance, as well as the heat treatment methods used to achieve these requirements. Manufacturing processes are also taken into consideration when choosing the material.
Since shafts typically experience alternating stresses during operation, the most common failure mode for shafts is fatigue fracture due to these alternating stresses. Therefore, shaft materials should possess a certain level of toughness and good fatigue resistance, which are fundamental requirements for shaft materials.
The commonly used material for shafts is high-quality carbon structural steel with a moderate carbon content. For lightly loaded or less critical shafts, ordinary carbon structural steel can also be used. For heavily loaded shafts with restricted dimensions, as well as those with specific requirements, medium-carbon alloy steel may be employed. Alloy steel is sensitive to stress concentration, so the structural shape of shafts made from alloy steel should minimize stress concentration points, and low surface roughness is required.
Cast iron is generally not recommended as a shaft material due to its poor toughness. However, for complex but less critical shaft structures, ductile iron or high-strength cast iron can be considered.
Although materials with higher ultimate strength have slightly higher elastic modulus, the differences in elastic modulus among different steel types are not significant. Therefore, selecting materials with higher ultimate strength solely to improve shaft stiffness is not suitable.
Shafts are typically manufactured from rolled round steel or forgings followed by machining. Smaller diameter shafts can be made from rolled round steel, while larger diameter or important shafts are often produced from forgings.
Common Materials for Shafts and Mechanical Properties are Listed in the Table Below:
Common materials and mechanical properties of shafts MPa | |||||||||
Material Grade | Heat Treatment | Blank Diameter /mm | Hardness (HBS) | Ultimate Tensile Strength σb (MPa) |
Yield Strength σs |
Bending Fatigue Limit σ-1 |
Shear Fatigue Limit t-1 |
Allowable Bending Stress [σ-1] |
Remarks |
Q235A | Hot Rolled or Air Cooled After Forging | <100 | 400~420 | 225 | 170 | 105 | 40 | Used for non-critical and lightly loaded shafts | |
>100~250 | 375~390 | 215 | |||||||
20 | Normalizing | 25 | ≤156 | 420 | 250 | 180 | 100 | 40 | Used for moderately loaded shafts with high toughness requirements |
Normalizing Tempering |
<100 >100~300 >300~500 >500~700 | 103~156 | 400 380 370 360 |
220 200 190 180 |
165 155 150 145 |
95 90 85 80 |
Continuation Table | |||||||||
Material Grade | Heat Treatment | Blank Diameter /mm | Hardness (HBS) | Ultimate Tensile Strength σb (MPa) |
Yield Strength σs | Bending Fatigue Limit σ-1 |
Shear Fatigue Limit t-1 |
Allowable Bending Stress [σ-1] |
Remarks |
35 | Normalizing | 25 | ≤187 | 540 | 320 | 230 | 130 | 45 | Widely used |
Normalizing Tempering |
≤100 >100~300 >300~500 >500~700 >750-1000 |
149~187 143~187 137~187 |
520 500 480 460 440 |
270 260 240 230 220 |
210 205 190 185 175 |
120 115 110 105 100 |
|||
Quenching | ≤100 >100~300 | 156~207 | 560 540 |
300 280 |
230 220 |
130 125 |
50 | ||
45 | Normalizing | 25 | ≤241 | 610 | 360 | 260 | 150 | 55 | Most widely used |
Normalizing Tempering |
≤100 >100~300 >300~500 .>500~750 | 170~217 162-217 156~217 | 600 580 560 540 |
300 290 280 270 |
240 235 225 215 |
140 135 130 125 |
|||
Quenching | ≤200 | 217~255 | 650 | 360 | 270 | 155 | 60 | ||
35SiMn (42SiMn) | Quenching | 25 | 900 | 750 | 445 | 255 | 70 | Performance close to 40Cr, used for medium-sized shafts | |
≤100 >100-300 >300~400 >400~500 |
229~286 217~269 217~255 196~255 |
800 750 700 650 |
520 450 400 380 |
355 320 295 275 |
205 185 170 160 |
||||
40MnB | Quenching | 25 | 1000 | 800 | 485 | 280 | 70 | Performance close to 40Cr, used for important shafts | |
≤200 | 241-286 | 750 | 500 | 335 | 195 | ||||
40Cr | Quenching | 25 | 1000 | 800 | 485 | 280 | 70 | Used for heavily loaded, non-impact important shafts | |
≤100 >100-300 >300~500 >500-800 |
241~286 229~269 217~255 | 750 700 650 600 |
550 500 450 350 |
350 320 295 255 |
200 185 170 145 |
||||
40CrNi | Quenching | 25 | 1000 | 800 | 485 | 280 | 75 | Used for very important shafts | |
≤100 >100-300 |
270~300 240-270 |
900 785 |
735 570 |
430 370 |
260 210 |
||||
35CrMo | Quenching | 25 | 1000 | 850 | 500 | 285 | 70 | Performance close to 40CrNi, used for heavy loaded shafts | |
≤100 >100~300 >300~500 >500~800 | 207~269 | 750 700 650 600 |
550 500 450 400 |
350 320 295 270 |
200 185 170 155 |
||||
38SiMnMo | Quenching | ≤100 >100~300 >300~500 >500~800 |
229~286 217~269 196~241 187~241 |
750 700 650 600 |
600 550 500 400 |
360 335 310 270 |
210 195 175 155 |
70 | Performance close to 40CrNi, used for heavy loaded shafts |
38CrMoAIA | Quenching | 30 | 229 | 1000 | 850 | 495 | 285 | 75 | Used for highly wear-resistant, high-strength, and minimally deformed shafts |
>30~60 | 293~321 | 930 | 785 | 440 | 280 | ||||
>60~100 | 277~302 | 835 | 685 | 410 | 270 | ||||
>100~160 | 241-277 | 785 | 590 | 375 | 220 | ||||
20Cr | Carburization Quenching Tempering | 15 30 ≤60 |
Carburization 56-62 HRC |
850 650 650 |
550 400 400 |
375 280 280 |
215 160 160 |
60 | Used for balanced strength and toughness requirements |
Continuation Table | |||||||||
Material Grade | Heat Treatment | Blank Diameter /mm | Hardness (HBS) | Ultimate Tensile Strength σb (MPa) |
Yield Strength σs | Bending Fatigue Limit σ-1 |
Shear Fatigue Limit t-1 |
Allowable Bending Stress [σ-1] |
Remarks |
35 | Normalizing | 25 | <187 | 540 | 320 | 230 | 130 | 45 | Widely used |
Normalizing Tempering |
<100 | 149~187 143~187 137~187 |
520 500 480 460 440 |
270 260 240 230 220 |
210 205 190 185 175 |
120 115 110 105 100 |
|||
>100~300 | |||||||||
>300~500 | |||||||||
>500~700 | |||||||||
>750-1000 | |||||||||
Quenching | ≤100 >100~300 | 156~207 | 560 540 |
300 280 |
230 220 |
130 125 |
50 | ||
45 | Normalizing | 25 | <241 | 610 | 360 | 260 | 150 | 55 | Most widely used |
Normalizing Tempering |
≤100 >100~300 >300~500 >500~750 | 170~217 162-217 156~217 | 600 580 560 540 |
300 290 280 270 |
240 235 225 215 |
140 135 130 125 |
|||
Quenching | ≤200 | 217~255 | 650 | 360 | 270 | 155 | 60 | ||
35SiMn (42SiMn) | Quenching | 25 | 900 | 750 | 445 | 255 | 70 | Performance close to 40Cr, used for medium-sized shafts | |
≤100 >100-300 >300~400 >400~500 |
229~286 217~269 217~255 196~255 |
800 750 700 650 |
520 450 400 380 |
355 320 295 275 |
205 185 170 160 |
||||
40MnB | Quenching | 25 | 1000 | 800 | 485 | 280 | 70 | Performance close to 40Cr, used for important shafts | |
≤200 | 241-286 | 750 | 500 | 335 | 195 | ||||
40Cr | Quenching | 25 | 1000 | 800 | 485 | 280 | 70 | Used for heavily loaded, non-impact important shafts | |
≤100 >100-300 >300~500 >500-800 |
241~286 229~269 217~255 | 750 700 650 600 |
550 500 450 350 |
350 320 295 255 |
200 185 170 145 |
||||
40CrNi | Quenching | 25 | 1000 | 800 | 485 | 280 | 75 | Used for very important shafts | |
≤100 | 270~300 | 900 | 735 | 430 | 260 | ||||
>100~300 | 240-270 | 785 | 570 | 370 | 210 | ||||
35CrMo | Quenching | 25 | 1000 | 850 | 500 | 285 | 70 | Performance close to 40CrNi, used for heavy loaded shafts | |
≤100 >100~300 >300~500 >500~800 | 207~269 | 750 700 650 600 |
550 500 450 400 |
350 320 295 270 |
200 185 170 155 |
||||
38SiMnMo | Quenching | ≤100 >100~300 >300~500 >500~800 |
229~286 217~269 196~241 187~241 |
750 700 650 600 |
600 550 500 400 |
360 335 310 270 |
210 195 175 155 |
70 | Performance close to 40CrNi, used for heavy loaded shafts |
38CrMoAIA | Quenching | 30 | 229 | 1000 | 850 | 495 | 285 | 75 | Used for highly wear-resistant, high-strength, and minimally deformed shafts |
>30~60 | 293~321 | 930 | 785 | 440 | 280 | ||||
>60~100 | 277~302 | 835 | 685 | 410 | 270 | ||||
>100~160 | 241-277 | 785 | 590 | 375 | 220 | ||||
20Cr | Carburization Quenching Tempering |
15 30 ≤60 |
Carburization 56-62 HRC |
850 650 650 |
550 400 400 |
375 280 280 |
215 160 160 |
60 | Used for balanced strength and toughness requirements |
In summary, the selection of shaft materials should consider mechanical performance, environmental factors, and cost. By choosing the right material, you can ensure that your shaft operates efficiently within its expected lifespan and meets the requirements of specific applications. If you're looking for the best shaft material for your application, our expert team is ready to provide consultation and advice.