Comprehensive Guide: Choosing the Right Shaft Material

Aug 10, 2023

Common Materials for Shafts

 

There are numerous material options for shafts, and the selection depends primarily on the requirements for strength, stiffness, wear resistance, as well as the heat treatment methods used to achieve these requirements. Manufacturing processes are also taken into consideration when choosing the material.

 

Since shafts typically experience alternating stresses during operation, the most common failure mode for shafts is fatigue fracture due to these alternating stresses. Therefore, shaft materials should possess a certain level of toughness and good fatigue resistance, which are fundamental requirements for shaft materials.

 

The commonly used material for shafts is high-quality carbon structural steel with a moderate carbon content. For lightly loaded or less critical shafts, ordinary carbon structural steel can also be used. For heavily loaded shafts with restricted dimensions, as well as those with specific requirements, medium-carbon alloy steel may be employed. Alloy steel is sensitive to stress concentration, so the structural shape of shafts made from alloy steel should minimize stress concentration points, and low surface roughness is required.

 

Cast iron is generally not recommended as a shaft material due to its poor toughness. However, for complex but less critical shaft structures, ductile iron or high-strength cast iron can be considered.

 

Although materials with higher ultimate strength have slightly higher elastic modulus, the differences in elastic modulus among different steel types are not significant. Therefore, selecting materials with higher ultimate strength solely to improve shaft stiffness is not suitable.

 

Shafts are typically manufactured from rolled round steel or forgings followed by machining. Smaller diameter shafts can be made from rolled round steel, while larger diameter or important shafts are often produced from forgings.

 

shaft materials

 

Common Materials for Shafts and Mechanical Properties are Listed in the Table Below:

 

Common materials and mechanical properties of shafts MPa
Material Grade Heat Treatment Blank Diameter  /mm Hardness  (HBS) Ultimate Tensile Strength
 σb (MPa)

Yield Strength

σs 

Bending Fatigue Limit
σ-1 
Shear Fatigue Limit
t-1
Allowable Bending Stress
[σ-1] 
Remarks
Q235A Hot Rolled or Air Cooled After Forging <100   400~420 225 170 105 40 Used for non-critical and lightly loaded shafts
>100~250   375~390 215
20 Normalizing  25 ≤156 420 250 180 100 40 Used for moderately loaded shafts with high toughness requirements
 
Normalizing

Tempering

<100 >100~300 >300~500 >500~700 103~156 400
380
370
360
220
200
 190 180
165
155
150
145
95
90
85
 80

 

Continuation Table 
Material Grade Heat Treatment Blank Diameter  /mm Hardness  (HBS) Ultimate Tensile Strength
 σb (MPa)
Yield Strength σs  Bending Fatigue Limit
σ-1 
Shear Fatigue Limit
t-1
Allowable Bending Stress
[σ-1] 
Remarks
35 Normalizing 25 ≤187 540 320 230 130 45 Widely used
Normalizing

Tempering
≤100
>100~300
>300~500
>500~700
>750-1000
149~187
143~187
137~187
520
500
480
460
440
270
260
240
230
220
210
205
190
185
175
120
115
110
105
100
Quenching ≤100 >100~300 156~207 560
540
300
280
230
 220
130
125
50
45 Normalizing 25 ≤241 610 360 260 150 55 Most widely used
Normalizing
Tempering
≤100 >100~300 >300~500 .>500~750 170~217 162-217 156~217 600
 580
 560
 540
300
 290 280
270
240
235
225
215
140
135
130
125
Quenching ≤200 217~255 650 360 270 155 60
35SiMn (42SiMn) Quenching 25   900 750 445 255 70 Performance close to 40Cr, used for medium-sized shafts
≤100
>100-300
>300~400
>400~500
229~286
217~269
217~255
196~255
800
750
700
650
520
450
400
380
355
320
295
275
205
185
170
160
40MnB Quenching 25   1000 800 485 280 70 Performance close to 40Cr, used for important shafts
≤200 241-286 750 500 335 195
40Cr Quenching 25   1000 800 485 280 70 Used for heavily loaded, non-impact important shafts
≤100
>100-300 >300~500 >500-800
241~286 229~269 217~255 750
700
650
 600
550
500
450
350
350
320
 295 255
200
 185
 170
 145
40CrNi Quenching 25   1000 800 485 280 75 Used for very important shafts
≤100
>100-300 
270~300
240-270
900
785
735
570
430
370
260
210
35CrMo Quenching 25   1000 850 500 285 70  Performance close to 40CrNi, used for heavy loaded shafts
≤100 >100~300 >300~500 >500~800 207~269 750
700
 650
 600
550
500
 450 400
350
 320 295
270
200
185
 170
155
38SiMnMo Quenching ≤100
>100~300
>300~500
>500~800
229~286
217~269
196~241
187~241
750
700
650
600
600
550
500
400
360
335
310
270
210
195
175
155
70  Performance close to 40CrNi, used for heavy loaded shafts
38CrMoAIA Quenching 30 229 1000 850 495 285 75 Used for highly wear-resistant, high-strength, and minimally deformed shafts
>30~60 293~321 930 785 440 280
>60~100 277~302 835 685 410 270
>100~160 241-277 785 590 375 220
20Cr  Carburization Quenching Tempering 15
30
≤60
Carburization
56-62
HRC
850
650
650
550
400
400
375
280
280
215
160
160
60 Used for balanced strength and toughness requirements

 

Continuation Table 
Material Grade Heat Treatment Blank Diameter  /mm Hardness  (HBS) Ultimate Tensile Strength
 σb (MPa)
Yield Strength σs  Bending Fatigue Limit
σ-1 
Shear Fatigue Limit
t-1
Allowable Bending Stress
[σ-1] 
Remarks
35 Normalizing  25 <187 540 320 230 130 45 Widely used
Normalizing
Tempering
<100 149~187
143~187
137~187
520
500
480
460
440
270
260
240
230
220
210
205
190
185
175
120
115
110
105
100
>100~300
>300~500
>500~700
>750-1000
Quenching ≤100 >100~300 156~207 560
540
300
280
230
220
130
125
50
45 Normalizing 25 <241 610 360 260 150 55 Most widely used
Normalizing
Tempering
≤100 >100~300 >300~500 >500~750 170~217 162-217 156~217 600
 580
 560
 540
300
 290
 280
270
240
 235 225
215
140
135
130
125
Quenching ≤200 217~255 650 360 270 155 60
35SiMn (42SiMn) Quenching 25   900 750 445 255 70 Performance close to 40Cr, used for medium-sized shafts
≤100
>100-300
>300~400
>400~500
229~286
217~269
217~255
196~255
800
750
700
650
520
450
400
380
355
320
295
275
205
185
170
160
40MnB Quenching 25   1000 800 485 280 70 Performance close to 40Cr, used for important shafts
≤200 241-286 750 500 335 195
40Cr Quenching 25   1000 800 485 280 70 Used for heavily loaded, non-impact important shafts
≤100
 >100-300 >300~500 >500-800
241~286 229~269 217~255 750
 700
650
 600
550
 500
450
350
350
 320 295
 255
200
 185
170
145
40CrNi Quenching 25   1000 800 485 280 75 Used for very important shafts
≤100 270~300 900 735 430 260
>100~300 240-270 785 570 370 210
35CrMo Quenching 25   1000 850 500 285 70  Performance close to 40CrNi, used for heavy loaded shafts
≤100 >100~300 >300~500 >500~800 207~269 750
700
 650
600
550
500
450
 400
350
320
 295 270
200
185
170
155
38SiMnMo Quenching ≤100
>100~300
>300~500
>500~800
229~286
217~269
196~241
187~241
750
700
650
600
600
550
500
400
360
335
310
270
210
195
175
155
70  Performance close to 40CrNi, used for heavy loaded shafts
38CrMoAIA Quenching 30 229 1000 850 495 285 75 Used for highly wear-resistant, high-strength, and minimally deformed shafts
>30~60 293~321 930 785 440 280
>60~100 277~302 835 685 410 270
>100~160 241-277 785 590 375 220
20Cr  Carburization
 Quenching
 Tempering
15
30
≤60
Carburization
56-62
HRC
850
650
650
550
400
400
375
280
280
215
160
160
60 Used for balanced strength and toughness requirements

 

 

In summary, the selection of shaft materials should consider mechanical performance, environmental factors, and cost. By choosing the right material, you can ensure that your shaft operates efficiently within its expected lifespan and meets the requirements of specific applications. If you're looking for the best shaft material for your application, our expert team is ready to provide consultation and advice.

 

 

 

RELATED POSTS